Search results for "PULSE SEQUENCES"
showing 2 items of 2 documents
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
2012
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from the Pontryagin Maximum Principle. In a three-level quantum system, we show that the Stimulated Raman Adiabatic Passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication
2012
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes. © 2006 IEEE.